
SYSTEM
ARCHITECTURE

AHMAD
JALLOH

STARTER
Open Student Portal

Click on Fafl

Click on Year 10

Click on Add Note

Answer the following question;

1.  Describe the purpose of the CPU [2 marks]
2.  Describe four function of the CPU [4 marks]
3.  Describe the function of Control Unit (CU) [2 marks]
4.  Describe the function of ALU [2 marks]
5.  Describe the function of Cache [2 marks]

STARTER
1.  Describe the purpose of the CPU [4 marks]

•  The purpose of the central processing unit to perform process
data and perform calculation

•  The central processing unit also perform the fetch, decode and
execute cycle

2.  Describe four function of the CPU [4 marks]
•  Fetch instruction or data from RAM
•  Decode the instruction – This could be convert instruction to

binary
•  Execute the instruction – carry out the instruction
•  Repeat the fetch, decode and execute cycle

3.  Describe the function of Control Unit (CU) [2 marks]
•  It manages and monitors hardware on the computer to ensure the

correct data goes to the correct hardware.
•  It manages the input and output signals ensuring these are dealt with

correctly.
•  It manages the Fetch-Decode-Execute cycle.

STARTER
Describe the function of ALU [2 marks]
•  The Arithmetic Logic Unit is where all the calculation

and comparison takes place
•  Arithmetic part, which performs calculations on the data,

e.g. 3 + 2 = 5
•  Logic part – which deals with logical operations such as is

True / False / Equal to / Greater than etc.

Describe the function of Cache [2 marks]
•  The cache memory stores the instruction/data that frequently

processed
•  The instruction/data in cache can be assess faster than

accessing them from RAM
•  The larger the cache the faster the faster the computer

system

STARTER
•  Student Resources
•  Computing
•  Year 10
•  GCSE Computer Science 9 - 1
•  Unit 1 –Computer System
•  Copy System Architecture folder
•  Paste it your Unit 1 - Computer System folder

ACTIVITY

5 minutes to discuss and feedback on the following:

1.  What is this?
2.  What is it for?

What do you notice?
What questions do you have?
What do you think? (hypothesis)

7

An AMD
processor

8

Pentium 4
180nm

PURPOSE AND FUNCTIONS OF THE CPU
The main purpose of the CPU are
•  To processing data such as searching, sorting, loading and

saving data
•  To perform Calculating and decision making
•  Perform Fetch – Decode – Execute Cycle

The main function of the CPU are
•  Fetch data and instruction from main memory (RAM or Cache)
•  Decode the instruction (Convert to Binary)
•  Execute instruction
•  Repeat Fetch – Decode – Execute Cycle
•  Copy the location of instruction and data into the Memory

Address Register

BEFORE THE VON NEUMANN ARCHITECTURE
History

Before 1945, computers were essentially preprogramed
machines.

This meant that a computer would typically be set up, with
wires and switches to perform a specific task.

In this way, a computer program was considered to be part of
the machine.

The only thing it would be given is data to be processed.

THE VON NEUMANN ARCHITECTURE
Von Neumann

But in 1945, a mathematician from the USA called
John Von Neumann, had an idea.

He wondered if it would be possible to create a
computer where the program (and its data) could
be stored together, independent of ‘the machine’.

This meant that the same computer could work, no
matter what program it was given.

No more hours setting up machines, instead, the
time would be spent on creating the program
instructions!

FEATURES OF THE CPU
The CPU is the core of every computer system and has four
main components:

1.  The control unit which manages the Fetch-Decode-
Execute cycle and control flow of data.

2.  The ALU – Arithmetic and Logic Unit – carries out all of
the arithmetic and logical operations, including:

•  Addition;
•  Subtraction;
•  Comparisons (for example, equal to, less than, greater

than).

3.  Register - used to temporarily hold bits of data needed by
the CPU.

4.  Cache Memory - Immediate Access Store (IAS)

THE CPU – CENTRAL PROCESSING UNIT

The Control Unit
There are three main jobs of the Control
Unit:

1.  It manages and monitors hardware on
the computer to ensure the correct data
goes to the correct hardware.

2.  It manages the input and output signals
ensuring these are dealt with correctly.

3.  It manages the Fetch-Decode-Execute
cycle.

THE CPU – CENTRAL PROCESSING UNIT

Arithmetic and Logic Unit (ALU)
This is where the CPU actually carries out
the maths and logic on the data (processes
it).
It has two parts:

• Arithmetic part, which performs
calculations on the data, e.g. 3 + 2 = 5

• Logic part – which deals with logical
operations such as is True / False / Equal
to / Greater than etc.

• The CPU has various registers which are used to
temporarily hold bits of data needed by the CPU.

• They are very quick to read or write to, much quicker than
any other form of memory.

• The main registers you need to know about are:

• Memory Address Register (MAR)

• Memory Data Register (MDR)

• The program counter (PC)

• Accumulator

Registers

THE CPU – CENTRAL PROCESSING UNIT
Immediate Access Store (Cache)

•  This part stores the data which is to be
immediately processed.

•  The CPU takes a chunk of data / instructions
from the RAM and keeps it close so that it
always has a constant supply of data to
process.

•  If data and instructions were downloaded from
RAM one item at a time, the CPU would work far
slower because the CPU cycles much faster
than the RAM can deliver data.

•  So instead, chunks are downloaded and stored
on the CPU so the CPU doesn’t spend wasted
time waiting for a deliver of data.

Memory Hierarchy

RAM

Registers
CPU REGISTER FUNCTION

Accumulator This stores data that is being used in calculations.
Accumulator stores the result of the ALU

Program
Counter

Program Counter stores the address or location of the next
instruction to be run
This automatically ticks to the next memory address when an
instruction is loaded. It increment by 1 after each cycle

Instruction
Register (CIR)

Memory Address
Register (MAR)

This holds the instruction currently being executed or decoded.
It also known as the Current Instruction Register (CIR)

Memory Address Register - This holds a memory address of
instruction or data to be accessed by the CPU.

Memory Data
Register (MDR)

This holds the actual data/instruction that has been retrieved
from memory (in case of read) or to be stored into memory (in
case of write).

SUMMARY OF THE CPU
1.  An input device (e.g.

keyboard) sends data to the
CPU. The Control Unit
receives this data.

2.  The Control Unit sends this
data into main memory to be
used later.

3.  When the time is right, the
data will be transferred from
main memory into cache (IAS)

4.  The data will then be sent to
the ALU for processing

5.  The control unit will send the
processed data back (for
example to an output device
such as a screen or monitor).

Activity – Von Neumann

• Open the “System Architecture Booklet”

• Complete all actives in the Von Neumann
Architecture section

STARTER
Open Student Portal

Click on Fafl

Click on Year 10

Click on Add Note

Answer the following question;

1.  Describe the purpose of MAR [2 marks]

2.  Describe the purpose of MDR [2 marks]

3.  Describe the purpose of Program Counter [2 marks]

4.  Describe the purpose of Accumulator [2 marks]

STARTER
1.  Describe the purpose of MAR [2 marks]
•  Memory Address Register - This holds a memory address of

instruction or data to be accessed by the CPU.

1.  Describe the purpose of MDR [2 marks]
•  Memory Data Register - This holds the actual data/instruction

that has been retrieved from memory (in case of read) or to be
stored into memory (in case of write).

1.  Describe the purpose of Program Counter [2 marks]
•  Program Counter stores the address or location of the next

instruction to be run. It increment by 1 after each cycle

1.  Describe the purpose of Accumulator [2 marks]
•  This stores data that is being used in calculations. Accumulator

stores the result of the ALU

STARTER
Open Student Portal

Click on Fafl

Click on Year 10

Read the feedback from your Teacher;

1.  Click on Add Note

2.  Response to the feedback

3.  Answer the questions on the Target section

1.  All question must be answered in exam condition

2.  Answer all question as detail as you can.

CPU INSTRUCTIONS SET
Every CPU has a set of instructions to perform its functions,
called “Instructions Set”
Some of these instructions includes;
§ OUTPUT – this output to a device such as monitor
§ INPUT – this input from a devices such as a keyboard
§ LOAD – this load number from RAM into the C PU
§ ADD – this add two number together
§ STORE – this store number from the CPU back out of RAM
§ COMPARE – this compare one number to another
§ Branch if Zero – This jump to another address in RAM if the

value in accumulator is zero
§ Branch – this jump to another address in RAM

INSTRUCTIONS SET
Move (Number of Step) Forward
Turn (Number of Degree) Right
Turn (Number of Degree) Left

CPU: THE BOOT PROGRAM
The Boot Program

•  Immediately after being switched on, the CPU looks
in a specific location in read only memory (ROM)
for the first program to load and execute.

•  This is the boot sequence.

•  The boot process gets the computer up and running
and the operating system started.

•  After this initial boot process is complete, control is
handed to the operating system to provide the
programs for the CPU to run.

1 - The Fetch step:

•  In this step the CPU fetches some data and instructions from main
memory (RAM) and then store them in its own temporary memory
called 'registers'.

•  The memory address of the instruction is stored in a register called
the Program Counter (PC) so the CPU can keep track of which
instruction is next.

•  After an instruction is fetched, the PC is updated so the CPU knows
the address of the next instruction it has to fetch.

HOW THE CPU COMMUNICATES

RAM / Memory

CPU

Can I Have
Some Data?

Yep! Here
it is!

THE CPU – CENTRAL PROCESSING UNIT
The Fetch Stage - Continued
•  For this to happen, the CPU uses a piece of hardware path

called the 'address bus'.

•  The address of the next item that the CPU wants is put onto
the ‘address bus’.

•  Data from this area then travels from the RAM to the CPU on
another piece of hardware called the ‘Data Bus’

RAM / Memory CPU

RAM / Memory CPU

Address
Bus

Data
Bus

2 - The Decode step:

•  The decode step is where the CPU understands or works out
what the instruction it has just fetched actually means.

•  This means the micro-processor will look the binary code up
in a table.

•  The CPU ‘decodes’ the instruction and gets things ready for
the next step.

MEMORY CONTENTS
1 1 0 0 0 1 1 0

OP-CODE ADDRESS OF
DATA (OPERAND)

1 1 0 0 0 1 1 0

HOW THE CPU COMMUNICATES

PROGRAM INSTRUCTIONS
A program instruction has two parts –

1.  Opcode – This is the instruction part that tells the processor
what to do such as ADD or move a byte of data ,

2.  Operand – This the data part.

The operand might be an actual number, or more commonly it
will be an address where the required data can be found or
where it must be sent.

1 0 0 1 1 1 0 1

1 0 0 1 1 1 0 1

Operator			
	
ADD	to	the	accumulator	

Operand			
	
The	contents	of	memory	
loca6on	1101	

Slide 31

3 - The Execute Step:
•  In this step the control unit links together the parts

of the CPU that are needed to execute the
instruction.

•  The Execute stage is where data processing
happens.

•  Instructions are carried out on the data.
•  Once a cycle has completed, another begins.

HOW THE CPU COMMUNICATES

INSTRUCTION
•  When a computer is instructed to run a program

it is directed to the start address for these data
and instructions.

•  The CPU fetches the first instruction from this
start location and decodes it to find out what to
do next.

ENCODING INSTRUCTIONS
•  When a instruction is passed to a micro-processor the first

thing which happens is the opcode is decoded.

•  This means the micro-processor will look the binary code up
in a table.

•  Once the instruction is found it will execute it.

•  This is called fetch execute cycle

Hard drive CPU Memory

Software

1. Software, like office, are
stored on the hard drive. To run
the software we must “load” it.

HOW THE CPU COMMUNICATES

Software

2. The operating system (like
windows) will be running on the
CPU.
When the user selects to load
office up, it is the OS which starts it
off.

Hard drive CPU Memory

HOW THE CPU COMMUNICATES

3. Software is loaded from
the hard drive and stored in
main memory

Software

Hard drive CPU Memory

HOW THE CPU COMMUNICATES

4. The CPU then transfers
instructions from memory into the
CPU in order to run them. It does this
ONE at a time!

Hard drive CPU Memory

HOW THE CPU COMMUNICATES

Activity – Instructions Set

• Open the “System Architecture Booklet”

• Complete all actives in the Instruction Set
section

What is the Little Man Computer?
•  The Little Man Computer (LMC) is a simulator which

copies the basic features of a modern computer.

•  It is based on the Von Neumann architecture featuring a
central processing unit consisting of

•  An Arithmetic Logic unit

•  Registers,

•  A control unit containing an instruction register and program
counter,

•  Input and Output mechanisms and

•  Memory (RAM) to store both data and instructions.

•  The LMC is based on the concept of a little man (shut in
a small room or inside a computer) acting like the control
unit of a CPU i.e.

•  Fetching instructions from memory,

•  Decoding and
•  Executing the instructions, and managing the input and

output.

•  The LMC can be programmed using either "Machine
Code" or "Assembly Language".

What is the Little Man Computer?

Activity – CPU FETCH DECODE EXECUTE
•  Get yourself in a group of 3

•  Decide who will play each of the following roles

•  FETCHER: Goes to Memory (Teacher) asking for instructions
at specific memory addresses

•  DECODER: uses a cypher to decode the instructions fetched
from memory

•  EXECUTER: executes the instructions, which are all about
PLOTTING on a grid to make an image.

•  The teacher (in this case Me) acts as MEMORY, holding all the
instructions in numbered memory locations.

•  Each team starts executing instructions at Memory location 1.

COMPUTATIONAL THINKING CONCEPTS
Your	instruc6ons:	

•  Fetcher	-	Collect	one	instruc.on	at	a	.me	from	the	teacher	(RAM).	
•  Decoder	-	Decode	the	red	and	blue	numbers.	
•  Executer	-	Fill	in	the	square:	

o  Blue	is	the	X	posi.on	(leB	and	right)	
o  Red	is	the	Y	posi.on	(up	and	down)	

Examples:	

Red	
8	 4	 2	 1	
0	 0	 1	 1	

2	+	1	=	3	

Y	=	3		
2	+	1	=	3	

X	=	3		

Blue	
8	 4	 2	 1	
0	 0	 1	 1	 Y

X

FETCH, DECODE AND EXECUTE

DECODING SYSTEM

A B C D E F G H I J K L M
X Y Z A B C D E F G H I J

N O P Q R S T U V W X Y Z
K L M N O P Q R S T U V W

•  Example

•  RN à

•  KHOOR à

OK

HELLO

PLOTTING	ACTIVITY	(EXECUTER)	

Fill	in	the	cell	as	indicated	by	the	instruc6ons	

PLOT	(n1,	n2)	à	X	=	n1,		Y=	n2	

INSTRUCTION	TO	DECODE	
A B C D E F G H I J K L M
X Y Z A B C D E F G H I J

N O P Q R S T U V W X Y Z

K L M N O P Q R S T U V W

Two) PLOT (Four,

Activity – Instructions Set

• Open the “System Architecture Booklet”

• Complete the activity in the Fetch Decode
Execute section

Which LMC?

§ There are many
implementations of the
Little Man Computer
(LMC).
§ We will use the excellent
web based one that can be
found here:
http://
peterhigginson.co.uk/LMC/

Parts of the LMC

Assembly instructions
RAM with 100
memory locations

Output

CPU with 4
registers

Input

Parts of the CPU
CPU REGISTER FUNCTION

Accumulator
This stores data that is being used in calculations. It can perform simple
addition and subtraction.

Program Counter

This contains the memory address of the next instruction to be loaded.
This automatically ticks to the next memory address when an instruction
is loaded. It can be altered during the running of the program depending
on the state of the accumulator.

Instruction Register

Memory Address
Register (MAR)

Input

Output

An Instruction Register to hold the top digit of the instruction read from
memory. It holds the actual instruction being executed

An Address Register hold the bottom two digits of the instruction read from
memory. This holds a memory address of data to be accessed.

This registers allows the user to input numerical data to the LMC.

This shows the data to output to the user.

Memory Data
Register (MDR)

This holds the data/instruction that has been retrieved from memory
(in case of read) or to be stored into memory (in case of write).

LMC Instruction set
MNEMON
IC CODE INSTRUCTION NUMERIC

CODE DESCRIPTION

ADD ADD 1xx

Add the value stored in mailbox xx to whatever value is currently on the
accumulator (calculator).
Note: the contents of the mailbox are not changed, and the actions of the
accumulator (calculator) are not defined for add instructions that cause sums
larger than 3 digits.

SUB SUBTRACT 2xx

Subtract the value stored in mailbox xx from whatever value is currently on the
accumulator (calculator).
Note: the contents of the mailbox are not changed, and the actions of the
accumulator are not defined for subtract instructions that cause negative
results - however, a negative flag will be set so that 8xx (BRP) can be used
properly.

STA STORE 3xx

Store the contents of the accumulator in mailbox xx (destructive).
Note: the contents of the accumulator (calculator) are not changed (non-
destructive), but contents of mailbox are replaced regardless of what was in
there (destructive)

LDA LOAD 5xx Load the value from mailbox xx (non-destructive) and enter it in the
accumulator (destructive).

INP INPUT 901
Go to the INBOX, fetch the value from the user, and put it in the accumulator
(calculator)
Note: this will overwrite whatever value was in the accumulator (destructive)

OUT OUTPUT 902 Copy the value from the accumulator (calculator) to the OUTBOX.
Note: the contents of the accumulator are not changed (non-destructive).

LMC Instruction set
MNEMO
NIC
CODE

INSTRUCTION NUMERI
C CODE DESCRIPTION

BRA BRANCH
(unconditional) 6xx Set the program counter to the given address (value xx). That is, value xx

will be the next instruction executed.

BRZ
BRANCH IF
ZERO
(conditional)

7xx

If the accumulator (calculator) contains the value 000, set the program
counter to the value xx. Otherwise, do nothing.
Note: since the program is stored in memory, data and program
instructions all have the same address/location format.

BRP
BRANCH IF
POSITIVE
(conditional)

8xx If the accumulator (calculator) is 0 or positive, set the program counter to
the value xx. Otherwise, do nothing.

HLT HALT 0 Stop working.

DAT DATA

This is an assembler instruction which simply loads the value into the next
available mailbox. DAT can also be used in conjunction with labels to
declare variables. For example, DAT 984 will store the value 984 into a
mailbox at the address of the DAT instruction.

Activity – Instructions Set

• Open the “System Architecture Booklet”

• Complete the activity in the LMC Instruction
Set section

Examples - input & output

§ This program simply asks the user
for an input and then outputs what
was input.

§  INP
§  OUT
§  HLT

§ The program has been assembled
into RAM and you can see the
numeric codes for the instructions
in the first three memory locations.

§ Try the example above and
save a copy on Notepad as
“Input and Output

Activity – Little Man Computer

• Open the “System Architecture Booklet”

• Complete the activity in the Little Man
Computer Activities section

Using memory (Variable)

•  Try the example on the left
and save a copy on Notepad
as “Load Variable”

•  This program asks the user to
input a number.

•  This is stored in a memory
location defined by the DAT
label.

•  A second number is asked for
and stored.

•  These numbers are then loaded
and output in order.

 INP !
 STA FIRST !
 INP !
 STA SECOND !
 LDA FIRST !
 OUT !
 LDA SECOND !
 OUT !
 HLT !
FIRST DAT 0!
SECOND DAT 0!

Adding

§ Try the example on the left and save
a copy on Notepad as “Adding two
Variables”

§ This program asks the user to input
a number.

§ This is stored in a memory location
defined by the DAT label.

§ A second number is asked for and
stored.

§ These numbers are then add
together

§ These numbers are then add
together and display the result

INP !
 STA FIRST !
 INP!

STA SECOND !
LDA FIRST!

 ADD SECOND!
 STA ANSWER !

LDA ANSWER!
 OUT !
 HLT !
FIRST DAT 0!
SECOND DAT 0 !
ANSWER DAT 0!

•  This program asks the user to
input a number.

•  This is stored in a memory location
defined by the DAT label.

•  A second number is asked for and
stored.

•  These numbers are then add
together

•  These numbers are then add
together

•  After the addition one is subtracted
and display the result

•  NOTE: the value 1 in a variable
called ONE

LMC Activity Using Memory

 INP !
 STA FIRST !
 INP !
 ADD FIRST!
 STA SECOND !

 SUB ONE!
 OUT !
 HLT!
!
FIRST DAT 0 !
SECOND DAT 0 !
ONE DAT 1!

•  Guess what this program does
•  Try the example on the left and

save a copy on Notepad as
“Adding and Subtracting
Variable”

Activity – Little Man Computer

• Open the “System Architecture Booklet”

• Complete the activity in the Little Man
Computer Activities section

BRANCHES AND
LOOPS IN LMC

•  Try the example on the left and
save a copy on Notepad as
“Branch Always”.

•  Add comments explaining
what the code does

•  This example will keep
outputting the value which is
stored in A forever.

•  The program will not stop.

 LOOPTOP LDA A
 OUT

 BRA LOOPTOP

 A DAT 5

BRA – Branch Always
This is the same a forever loop in Scratch. It is an unconditional
loop.

BRANCHES AND LOOPS IN LMC

•  Try the example on the left and
save a copy on Notepad
“Branch if Zero”.

•  Add a comment describing
what it does

•  This example uses a BRA to
create the loop and

•  A BRZ to break the loop.

 LOOPTOP LDA A
 SUB ONE
 STA A
 OUT
 BRZ END
 BRA LOOPTOP
 END HLT

 A DAT 5
 ONE DAT 1

BRZ – Branch if Zero
•  This allows us to branch our program if the value in the accumulator is zero.
•  This can be used to create counting loops similar to the repeat loop in Scratch

or a for loop in Python.

BRANCHES AND LOOPS IN LMC

•  Try the example on the left and
save a copy on Notepad as
“Branch if Positive”.

•  Add a comment describing
what it does

•  This example uses a BRP to
both create and terminate the
loop.

 LOOPTOP LDA A
 SUB ONE
 STA A
 OUT
 BRP LOOPTOP
 HLT
 A DAT 5
 ONE DAT 1

BRP – Branch if Positive
•  This also allows us to create a branch in our program, depending

on whether the contents of the accumulator are positive or not.
•  These can also be used to create loops.

Activity – Little Man Computer

• Open the “System Architecture Booklet”

• Complete the activity in the Little Man
Computer Activities section

Bigger
•  This program uses two branch

commands to alter the path of the
program.

•  There is no greater than or less
than command so we simply
subtract the second number from
the first.

•  If it is positive then the first number
must have been bigger so we
branch if positive.

•  The two numbers could be the
same however so we need to
check to see if the result is zero.
We branch if it is.

•  The biggest number is output or
zero if they are both the same.

 INP !
 STA FIRST !
 INP !
 STA SECOND !
 SUB FIRST !
 BRP SECONDBIG !
 LDA FIRST!
 OUT !
 HLT !
SECONDBIG BRZ SAME !
 LDA SECOND!
 OUT !
 HLT !
SAME LDA ZERO !
 OUT !
 HLT !
FIRST DAT 0!
SECOND DAT 0 !
ZERO DAT 0 !

Writing a Little Man Computer Program

•  Writing an LMC program can be quite a challenge.

•  As the instruction set is very limited we often need to perform
what seems to us to be a very simple task in an even simpler
way.

•  Using a Flow chart to help write the program is very helpful.

•  When the flow chart is created we can simply look at each
shape on the chart and think what instructions would we need
to have for that shape.

•  These will often be no more that a couple of lines of LMC code.

How to Write a Little man Computer
program

§ In flow charts there are 4 symbols that we commonly use.

SYMBOL MEANING LMC INSTUCTIONS

Start / Stop Start has no instruction but Stop is HLT.

Input
 &
Output

Any inputs will that need to be saved will be INP followed by
an STA command to store the value.
OUT is the output command. It may need to be

This could be a DAT command where we see variables
initialised (e.g. counter = 0).
addition and subtraction commands fit into this.
A process such as X = X + Y would need to be done in the
correct order. So we would Load X, Add Y and then store the
result as X. This would be LDA X, ADD Y, STA X

Process

Decision
There are only two instructions that can have two
alternatives. Branch if Positive and Branch if Zero.
If the test is true then the program can branch to another
part of the program. If not the program carries on.

Using memory (Variable)

•  This program asks the user to
input a number.

•  This is stored in a memory
location defined by the DAT
label.

•  A second number is asked for
and stored.

•  These numbers are then loaded
and output in order.

 INP !
 STA FIRST !
 INP !
 STA SECOND !
 LDA FIRST !
 OUT !
 LDA SECOND !
 OUT !
 HLT !
FIRST DAT 0 !
SECOND DAT 0 !

Using Memory (Variable)

•  First thing - create a flow chart to
show what needs to be done.

•  Be as detailed as you can be.

•  Note any values you need to
remember.

•  These will be the variables.

•  In LMC code they will become
the DAT commands.

•  Note if they have a start value.

 INP !
 STA FIRST !
 INP !
 STA SECOND !
 LDA FIRST !
 OUT !
 LDA SECOND !
 OUT !
 HLT !
FIRST DAT 0 !
SECOND DAT 0 !

Using Memory (Variable)
Start

FIRST = 0

INPUT
FIRST

INPUT
SECOND

OUTPUT
FIRST

OUTPUT
SECOND

Start

LOAD FIRST

SECOND= 0

LOAD FIRST

•  We start
•  We have 2 variables

•  FIRST DAT 0
•  SECOND DAT 0

•  NOTE: The variable is at the
top of the Program in the
Flowchart.

Using Memory (Variable)
Start

FIRST = 0

INPUT
FIRST

INPUT
SECOND

OUTPUT
FIRST

OUTPUT
SECOND

Start

LOAD FIRST

SECOND= 0

LOAD FIRST

•  Now start at the top and write
down the commands for the
instructions for the flow chart.

•  The LMC command for
INPUT is INP

•  If we need to store that we
need to follow this with a
store command, STA and
save it to memory using the
DAT label we created

INP !
STA FIRST !
!
 INP !
STA SECOND !

INP !
STA FIRST !
!
 INP !
STA SECOND !
!
LDA FIRST !
OUT !
!

Using Memory (Variable)
Start

FIRST = 0

INPUT
FIRST

INPUT
SECOND

OUTPUT
FIRST

OUTPUT
SECOND

Start

LOAD FIRST

SECOND= 0

LOAD SECOND

•  Now we use the LDA
command to load the
value stored in FIRST
Variable.

•  We use the OUT
command to output the
value stored in FIRST
Variable.

LDA FIRST !
OUT !
!
!
LDA FIRST !
OUT !
!

Using Memory (Variable)
Start

FIRST = 0

INPUT
FIRST

INPUT
SECOND

OUTPUT
FIRST

OUTPUT
SECOND

Start

LOAD FIRST

SECOND= 0

LOAD FIRST

•  We do the same for the Second
value

•  We use the LDA command to load
the value stored in SECOND
Variable.

•  We use the OUT command to
output the value stored in
SECOND Variable.

LDA SECOND !
OUT !
!

Using Memory (Variable)
Start

FIRST = 0

INPUT
FIRST

INPUT
SECOND

OUTPUT
FIRST

OUTPUT
SECOND

END

LOAD FIRST

SECOND= 0

LOAD FIRST

Once we Output both FIRST and
SECOND Value,

We use HLT to end the program

INP !
STA FIRST !
!
 INP !
STA SECOND !
!
LDA FIRST !
OUT !
!
LDA SECOND !
OUT !
!
HLT !
!

Task

•  Try this code on LMC

•  Re-create the
flowchart

•  Describe what you
think the program
does.

LOOPTOP INP
STA num
BRZ CALCULATE
LDA total
ADD num
STA total
LDA count
ADD one
STA count
BRA LOOPTOP
CALCULATE LDA total
SUB count
STA total
BRP DIVIDE
LDA RESULT
OUT
HLT
DIVIDE LDA result
ADD one
STA result
BRA CALCULATE
total DAT 0
count DAT 0
num DAT
result DAT 0
one DAT 1

Activity – Little Man Computer

• Open the “System Architecture Booklet”

• Complete the activity in the Little Man
Computer Challanges section

STARTER – 5 MINUTES
Describe how does the following characteristics of the
CPU affect performance of the computer system

1.  Clock Speed

2.  Number of Cores

3.  Cache

4.  Bus

CHARACTERISTIC OF CPU
VS

PERFORMANCE

CPU: CLOCK SPEED
What characteristics affect the performance of the CPU?
•  The clock speed – how quickly the CPU processes

instructions per second:

• The clock chip uses a vibrating crystal that maintains a
constant rate and all processes are synchronised to this clock
signal.

• The clock speed is measured in Hertz(Hz) or cycles per
second. A clock speed of 600 Hz would be 600 cycles per
second.

• MHz - means million of cycles per second, so a clock speed of
3MHz would means 3 million cycles per second

• GHz - means billions of cycles per second, so a clock speed
of 3GHz would mean 3 billion cycles per second.

 CPU: NUMBER OF CORES
•  The number of cores – how many instructions it can process

at a time:
•  A multiple core processor has more than one CPU

•  In a dual core CPU, two CPUs work together
•  In a quad core CPU, four CPUs works together

•  Since each core can fetch, decode and execute
instructions at the same time, the computer is able to
process two or instructions at once.

Interface to
bus

CPU core 2 CPU core 1

CPU: BUS
•  Data is moved around the computer on buses.

• Bus speed affects how quickly the computer can move data,
and therefore has an effect on the speed of the computer.

•  A bus is simply a circuit that connects one part of the
motherboard to another.

•  The speed of the bus, measured in MHz (millions of cycles
per second), refers to how much data can move across the
bus at the same time.

 CPU: CACHE MEMORY
•  Cache memory is very fast memory that can work at speed

similar to the CPU, but it is very expensive and only used to
store data waiting to be processed by the CPU.

•  Cache memory is usually provided in much smaller sizes than
the main memory, megabytes, MB as opposed to
gigabytes, GB (1GB = 1024 MB)

•  Cache memory is located very close to the CPU to minimise
access times the CPU fetch instruction from RAM.

•  A mid-range laptop might have 8GB of RAM but only 2 or 3
MB of cache memory.

•  The larger the cache, the faster the computer system

CPU: ROLE OF THE CACHE
The role of cache in data transfer:

CPU

Cache

Main
Memory

Data sent to CPU

Data copied to cache Request for data

If data not in cache, request
data from main memory

CPU: CORE I5
A typical Intel CORE i5 processor
•  Intel i5-3210M

• 2.5 GHz clock speed (2.5 billion
operations per second)

• 2 cores
• 5MB cache memory

EXAM PRACTICE

In a short while you will carry out
some exam practice.

But first…

…Some exam technique tips.

COMMAND WORDS
What do each of these words mean?

•  State/Identify/Give/Name
•  Describe
•  Describe/Explain/Discuss using examples
•  Explain
•  Discuss

•  …you need to know because they appear in all exams.
•  If (for example) the examiner asks you to EXPLAIN and you

instead just DESCRIBE, you will not get any marks.

COMMAND WORDS
State/Identify/Give/Name
Simply label a diagram, fill out a table or write a few words

Describe
Describing is ‘saying what you see’

E.G.: A computer will have a CPU, Primary and Secondary
storage etc

Explain
Explaining is ‘saying why something is like that’

E.G.: A computer will have a CPU so that it can process all of the
data the computer needs to perform a range of tasks. Primary
and Secondary storage is needed because…

COMMAND WORDS
Discuss
Discussing is ‘looking at two sides of an issue, weighing up the
two views and giving a conclusion’. Often these require a mini
essay answer.

E.G.: New technology could be seen as being bad for the
environment because…, but on the other hand, new technology
has lead to… In conclusion I believe that…
Describe/Explain/Discuss using examples

Finally, if you are asked to give examples in any of these types of
questions – YOU MUST GIVE EXAMPLES!

REMEMBER
•  Whenever you answer exam questions you must

CaM it!

•  Look at the…
•  Command words AND Marks

•  Do what the question asks and make sure your
answers have enough points or explanations to get
the marks available.

ACTIVITY 2

Complete the
timed exam
practice
questions.

5 minutes

Explain in as much detail as you can –

What effects the speed of a CPU?
Focus on the following ONLY

Cache
Bus speed
Cores
Clock speed

These are the main ones you need for the exam. The
others I have included for completeness.

Use the “The CPU-Student Note” to help you

EXTENSION

EMBEDDED
SYSTEM

LEARNING INTENTIONS
•  Know: What makes up a computer system

•  Understand: What is embedded system

•  Be able to: Define a embedded system and
give examples

Embedded

Computer System

Input Output

Storage CPU

RE-CAP
•  A computer system can be broken down into four

sections: Input, Processing, Output and Storage.

•  A computer needs devices to input, process, output and
store data.

Input CPU
(Processing) Output

Storage

• Task – List three hardware for each of the devices in a
PowerPoint

Input CPU
(Processing) Output

Storage
•  Input
•  Output
•  Processing
•  Storage
•  Communication

Activity

TYPES OF INPUT DEVICES - MANUAL
•  Keyboard

•  Mouse

•  Touchpad

•  Joystick

•  Touch screen

•  Concept keyboard

•  Scanner

•  Graphics tablet

•  Microphone

•  Digital camera

TYPES OF INPUT DEVICES - AUTOMATIC
•  Barcode readers

•  OMR (Optical Mark Reader)

•  Magnetic Ink Character Recognition (MICR)

•  Optical Character Reader (OCR)

•  Magnetic stripe reader

•  Sensors

•  Biometric devices

TYPES OF OUTPUT DEVICES
•  Monitor

•  Printer

•  Plotter

•  Projector

•  Speaker

•  Headphones

•  Light/LED

PROCESSING DEVICES
CPU – Central Processing Unit - Watch 30 second clip

STORAGE DEVICES
•  Hard disks

•  DVDs

•  CDs

•  Magnetic tape

•  Flash memory (USB)

•  Solid State Drive (SSD)

•  Micro SD Card

COMMUNICATION DEVICES
•  NIC (Network Interface Card)

•  Wi-Fi cards

•  Router

•  Modem

GENERAL SYSTEMS VS SPECIFIC
General computer systems –

• These are systems which we are used to.
•  play games,
•  do work,
•  chat with friends or
•  surf the web!

Specific (or dedicated) computer systems –

• These are systems which will only perform a single task.
• For example a airplane computer system or a shops till.

COMPUTER SYSTEMS
•  Computer systems are based on processing data

and producing information.

•  They are fast, and the important thing about them is
that they are programmable.

•  Computer systems are found in most electronic
gadgets.

•  For example, washing machines, cameras, burglar
alarms and telephones

• These are embedded system

•  For your exam, you will also need to understand what an
embedded system is.

•  When we think of a computer, you usually think of a PC and
as many of you know, a PC is made up of various
components including a motherboard, CPU, RAM, input
devices etc.

•  But of course a computer is any programmable machine…or
any electronic device which takes in data, processes it and
then outputs the result.

•  Can you therefore think of any other examples of computers?

EMBEDDED SYSTEMS

•  So when you consider devices like cameras and watches, as these are
programmable machines, they can also be called computers.

•  The main difference is that these computers run specific tasks – they are
not general purpose.

•  Because of this, they do not need to have separate components as these
devices wont need updating when new software / hardware is released.

•  These systems instead have all of their components arranged together on
a single circuit board.

•  As a result they are known as embedded systems as all of their hardware
is embedded together as one.

EMBEDDED SYSTEMS

Source: http://neuronelab.unisa.it

EMBEDDED SYSTEMS
Computer systems used in electronic gadgets
have all of the basic functionality that drives a
desktop PC.

• There are input and output devices, storage, a
processor and, most importantly, software this
is an embedded system.

IN
P

U
TS

O
U

TP
U

TS

EMBEDDED SYSTEMS (WASHING MACHINE)

INPUT

•  This washing machine has various input devices:
Buttons, Sensors including weight, temperature, water-level &
Door sensor

PROCESS

•  It uses the data from these inputs to calculate the water
 temperature, steps to follow, time to complete the program etc.

OUTPUT

•  And it outputs information on a display and by using ‘beeps’
 played through a speaker

EMBEDDED	SYSTEMS	
•  Software that is programmed to carry out a number

of dedicated functions.

•  For example, the software to run a washing
machine is stored on a computer chip and
embedded into the system.

EMBEDDED	SYSTEMS	
•  Control systems can be quite complex, for

example an engine management system.

EMBEDDED SYSTEMS
•  A typical engine management system in a car has

over 50 processors, which explains why car engine
faults can be difficult to trace without the right
equipment.

•  The embedded systems in a car look after various
safety features.

•  It is easy to see why these must be reliable and
thoroughly tested,

•  both as individual items and as integrated systems.

ACTIVITY

Use The “Embedded System” PDF file to
answer the following questions;

1.  What is Embedded System?
2.  List down 4 different types of Embedded

System
3.  List and Describe 4 Characteristics of

Embedded System
4.  List down the Skills Needed for Embedded

Applications

CONTENT
There are several Generations of Programming Languages

– Low Level
◦  1st Generation (Machine Code e.g. 1010101)
◦  2nd Generation (Assembly Code e.g. INP OUT

HLT)
– High Level

◦  3rd Generation (e.g. Python, Java
◦  4th Generation (e.g. MySQL)

1ST GENERATION
Machine Code (Example Binary - 101010101011)
Directly Executable by the processor
The Generation that “computers understand”

Difficult to program in, hard to understand, hard to
find errors (hard to debug)

2ND GENERATION
•  Assembly Code
•  Uses mnemonics

• Example LMC codes (INP, OUT ADD, BRP,
BRZ etc)

•  Easier to program in than 2nd Generation but
still difficult.

•  One Assembly Language instruction translates
to one Machine Code Instruction (1-1
relationship)

2ND GENERATION
•  Needs to be translated into Machine Code for

the computer to be able to execute it
•  Uses an Assembler
•  Assembler – Assembles Assembly Language

2ND GENERATION
•  Despite 2nd Generation being difficult to Debug

it still has its uses
– Debug means to go through the code to search

for where/why an error has occurred
•  It is most commonly used to program Device

Drivers
– Device Drivers are loaded into memory by the

Operating System and used to control the
operation of a Hardware Device e.g. Graphics
Card Drivers, Printer Drivers.

3RD GENERATION
•  Easier to understand (programmer)
•  Easier to find errors, easier to de-bug
•  Uses English-Like Keywords

• Example, print (“Hello World”)
•  One instruction translates into many machine code

instructions
•  E.g.’s Python, Java, Basic, Pascal, C+, Visual Basic

2ND VS 3RD GENERATION

 INP
 STA x
 OUT
 HLT

x DAT

x = int(input("Enter a number: "))
print(x)

3rd Generation 2nd Generation

•  Both code allow the user to enter a number and display
the number

•  3rd generation has 2 lines while
•  2nd generation translate to 5 lines

2ND VS 3RD GENERATION

 INP
 STA FIRST
 INP
 STA SECOND
 LDA FIRST
 ADD SECOND
 STA ANSWER
 LDA ANSWER
 OUT
 HLT
FIRST DAT 0
SECOND DAT 0
ANSWER DAT 0

first = int(input(“Please enter a number”))
second = int(input(“Please enter a number”))
answer = first + second
print (answer)

3rd Generation 2nd Generation

•  Both code allow the user to enter two numbers
•  These numbers are then add together and display the result
•  3rd generation has 4 lines while
•  2nd generation translate to 13 lines

3RD GENERATION
Translated using:

– Interpreter
– Compiler

Interpreters
– Translate and execute source code
– Line by Line, Statement by Statement
– Source code is checked for syntax – if correct, code is executed.
If incorrect interpreting is stopped.
– Used for development (aide debugging)

Compilers
– Translate entire source code all in one go into Machine Code
– Optimise code
– Used at the end of development (ready for shipping)
– Error Reports created along with Object Code

COMPILER VS INTERPRETER

4TH GENERATION
•  Known as a Declarative Language
•  Facts and Rules are stated
•  It describes what computation should be

performed and not how to perform it
•  Examples include:

– SQL
– Expert Systems
– Artificial Intelligence

ACTIVITY – IDENTIFY THE GENERATION

Dim Num1, Num2, Tot as Integer
Num1 = Console.Readline()
Num2 = Console.Readline()
Tot = Num1 + Num2
Console.Writelein(“Total is: “ & Tot)

0101010101010010101010010101
0101010011111001000100001010
100101

LOAD r1, c
LOAD r2, d
ADD r1, r2
DIV r1, #2

High Level (3rd Generation)

Low Level (2nd Generation)

Low Level
(1st Generation – Machine Code)

ACTIVITY - ANSWER

Dim Num1, Num2, Tot as Integer
Num1 = Console.Readline()
Num2 = Console.Readline()
Tot = Num1 + Num2
Console.Writelein(“Total is: “ & Tot)

010101010101001010101001
010101010100111110010001
00001010100101

LOAD r1, c
LOAD r2, d
ADD r1, r2
DIV r1, #2

High Level (3rd Generation)

Low Level (2nd Generation)

Low Level
(1st Generation – Machine Code)

Why Use Low-Level Language?

•  They allow direct access to the processors registers.
•  This means very fast processing for big data sets.
•  Hardware drivers and embedded systems (eg the

coding that goes into a washing machine) are written to
directly access the hardware for those devices.

•  Does not mean that a compiler is required which makes
for more much faster and efficient use of processor
time.

Assembly Language Vs Machine Code
Assembly Language Machine code

	

	

	

	

	

	

	

	

	

•  A language related closely to the
computer being programmed/low level
language/machine specific

•  Uses mnemonics for instructions

•  Uses descriptive names for data stores
(symbolic addressing)

•  Translated by an assembler into machine
code

•  Easier to write than machine code but
more difficult than high level language	

•  Written in Binary (or
hexadecimal)

•  No translation needed

•  Set of all instructions available
to the architecture which
depend on the hardware
design of the processor

•  Very difficult to write

•  Actual binary code run by the
machine

Points to note
•  The instruction set is very limited so you often need to come

up with a different way to perform things like multiplication or
comparing two numbers.

•  The LMC does not store decimals.

•  The LMC does not have a loop structure but you can use a
Branch Always command to redirect the code to an earlier
command.

•  Start with simple program

•  Create a flowchart for the program before going into LMC

•  Enjoy!

